Package: topiclabels 0.2.0

Jonas Rieger

topiclabels: Automated Topic Labeling with Language Models

Leveraging (large) language models for automatic topic labeling. The main function converts a list of top terms into a label for each topic. Hence, it is complementary to any topic modeling package that produces a list of top terms for each topic. While human judgement is indispensable for topic validation (i.e., inspecting top terms and most representative documents), automatic topic labeling can be a valuable tool for researchers in various scenarios.

Authors:Jonas Rieger [aut, cre], Fritz Peters [aut], Andreas Fischer [aut], Tim Lauer [aut], André Bittermann [aut]

topiclabels_0.2.0.tar.gz
topiclabels_0.2.0.zip(r-4.5)topiclabels_0.2.0.zip(r-4.4)topiclabels_0.2.0.zip(r-4.3)
topiclabels_0.2.0.tgz(r-4.4-any)topiclabels_0.2.0.tgz(r-4.3-any)
topiclabels_0.2.0.tar.gz(r-4.5-noble)topiclabels_0.2.0.tar.gz(r-4.4-noble)
topiclabels_0.2.0.tgz(r-4.4-emscripten)topiclabels_0.2.0.tgz(r-4.3-emscripten)
topiclabels.pdf |topiclabels.html
topiclabels/json (API)

# Install 'topiclabels' in R:
install.packages('topiclabels', repos = c('https://petersfritz.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/petersfritz/topiclabels/issues

On CRAN:

4.77 score 3 stars 1 scripts 137 downloads 3 exports 20 dependencies

Last updated 16 days agofrom:d26037f67e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 21 2024
R-4.5-winOKOct 21 2024
R-4.5-linuxOKOct 21 2024
R-4.4-winOKOct 21 2024
R-4.4-macOKOct 21 2024
R-4.3-winOKOct 21 2024
R-4.3-macOKOct 21 2024

Exports:as.lm_topic_labelsis.lm_topic_labelslabel_topics

Dependencies:askpassbackportscheckmateclicrayoncurlgluehmshttrjsonlitelifecyclemimeopensslpkgconfigprettyunitsprogressR6rlangsysvctrs

Readme and manuals

Help Manual

Help pageTopics
Automated Topic Labeling with Language Modelstopiclabels-package topiclabels
lm_topic_labels objectas.lm_topic_labels is.lm_topic_labels
Automatically label topics using language models based on top termslabel_topics label_topics.default label_topics.labelTopics